Inferentialism and Structuralism: A Tale of Two Theories

Ryan Mark Nefdt

Abstract


This paper aims to unite two seemingly disparate themes in the philosophy of mathematics and language (and logic) respectively, namely ante rem structuralism and inferentialism. My analysis begins with describing both frameworks in accordance with their genesis in the work of Hilbert. I then draw comparisons between these philosophical views in terms of their similar motivations and similar objections to the referential orthodoxy. I specifically home in on two points of comparison, namely the role of norms and the relation of ontological dependence in both accounts. Lastly, I show that insights from this purported connection can address certain objections to both theories respectively.


References


Anderson, A. and Belnap, N. 1975. Entailment: The Logic of Relevance and Necessity. Princeton University Press, Princeton.

Awodey, S. 1996. ‘Structure in Mathematics and Logic’. Philosophia Mathematica 4 (3):209-237.

Belnap, N. 1962. ‘Tonk, plonk and plink’. Analysis, 22, 130–134.

Benacerraf, P. 1965. ‘What Numbers Could Not Be’. The Philosophical Review, 74:47-73.

Bernays, P. 1923. ‘Erwiderung auf die Note von Herrn Aloys Muller: ¨ Uber Zahlen als Zeichen’. ¨ Mathematische

Annalen, 90:159–63, 1923. English translation in [Mancosu, 1998a, 223–226].

Bernays, P. 1930. ‘The Philosophy of Mathematics and Hilbert’s Proof Theory’. Bernays Project: Text No. 9. Translated by Ian Mueller, revised by Awodey, S., Buldt, B., Schlimm, D., and Sieg, W.

Brandom, R. 1994. Making it Explicit. Harvard University Press.

Brandom, R. 2007. ‘Inferentialism and Some of Its Challenges’. Philosophy and Phenomenological Research, Vol. 74, No. 3, pp 651-676.

Burgess, J. P. 1999. ‘Book Review: Stewart Shapiro, Philosophy of Mathematics’. Notre Dame Journal of Formal Logic 40(2): 283–91.

Cook, R. 2005. ‘What’s Wrong with Tonk (?)’. Journal of Philosophical Logic, Vol. 34, No. 2, pp. 217-226.

Dummett, M. 1991. Logical basis of metaphysics. London: Duckworth.

Franks, C. 2015. ‘David Hilbert’s Contribution to Logical Theory’. The History of Logic, A.P. Malpass (ed.). New York: Continuum.

Friederich, S. 2011. ‘Motivating Wittgenstein’s Perspective on Mathematical Sentences as Norms’. Philosophia Mathematica III, 19, pp 1-19.

Hellman, G. 1989. Mathematics without Numbers: Towards a Modal-Structuralist Interpretation. Oxford University Press.

Hellman, G. 2005. ‘Structuralism’. In The Oxford Handbook of Philosophy of Mathematics and Logic, Shapiro, S. (ed.). Oxford University Press.

Hilbert, D. 1923. ‘Die logischen Grundlagen der Mathematik’. Mathematische Annalen, 88:151–165. Lecture given at the Deutsche Naturforscher-Gesellschaft, September 1922. Reprinted in [Hilbert,

, 178–191]. English translation in [Ewald, 1996, 1134–1148].

Hilbert, D. [2004]. David Hilbert’s Lectures on the Foundations of Geometry, 1891-1902. Ulrich Majer and Michael Hallbett, (eds.). Springer, New York.

Keranen, J. 2001. ‘The Identity Problem for Realist Structuralism’. ¨ Philosophia Mathematica 9(3): 308–30.

Ketland, J. 2006. ‘Structuralism and the identity of indiscernibles’. Analysis 66, 303–315.

Linnebo, O. 2008. ‘Structuralism and the Notion of Dependence’. The Philosophical Quarterly, Vol. 58, No. 230.

MacBride, F. 2006. ‘What Constitutes the Numerical Diversity of Mathematical Objects?’ Analysis Vol. 66, No. 289, pp 63–69.

McCullagh, M. 2005. ‘Inferentialism and Singular Reference’. Canadian Journal of Philosophy, Vol. 35, No. 2, pp. 183-220.

Parsons, C. 1990. ‘The Structuralist view of mathematical objects’. Synthese 84: 303-346.

Peregrin, J. 2008. ‘An Inferentialist Approach to Semantics: Time for a New Kind of Structuralism?’. Philosophical Compass, 3/6: 1208–1223.

Peregrin, J. 2012. ‘What Is Inferentialism?’ In Inference, Consequence, and Meaning: Perspectives on Inferentialism, Lilia Gurova (ed.), 3 – 16. Newcastle upon Tyne: Cambridge Scholars Publishing.

Peregin, J. 2015. Inferentialism: Why Rules Matter. Palgrave Macmillan.

Prawitz, D . 1965. Natural deduction. Stockholm: Almqvist & Wiksell.

Raz, T. 2014. ‘Say My Name: An Objection to Ante Rem Structuralism’. ¨ Philosophia Mathematica (III) Vol. 23 No. 1, 116-125.

Rav, Y. 1999. ‘Why do we prove theorems?’ Philosophia Mathematica, 7(3), 5–41.

Resnik, M. 1981. ‘Mathematics as Science of Patterns: Ontology and Reference’. Nous, Vol. 15, pp 529-550.

Resnik, M. 1982. ‘Mathematics as a Science of Patterns: Epistemology’. Nous, Vol.16 pp 95-105.

Resnik, M. 1997. Mathematics as a Science of Patterns. Clarendon Press: Oxford.

Sellars, W. 1954. ‘Some Reflections on Language Games’. Philosophy of Science 21, 204–228.

Shapiro, S. 1991. Foundations without Foundationalism: A case for second-order logic. Oxford, Oxford University Press.

Shapiro, S. 1997. Philosophy of Mathematics: Structure and Ontology. Oxford University Press.

Shapiro, S. 2005. ‘Categories, Structures, and the Frege-Hilbert Controversy: The Status of Metamathematics’. Philosophia Mathematica III, 13, pp 61-77.

Shapiro, S. 2008. ‘Identity, indiscernibility, and ante rem structuralism: The tale of i and −i’, Philosophia Mathematica (3) 16, 285-309.

Schroeder-Heister, P. 1991. ‘Uniform Proof-Theoretic Semantics for Logical Constants (Abstract)’. Journal of Symbolic Logic 56, pp. 11-42.

Wanderer, J. 2008. Robert Brandom. McGill-Queen’s University Press Montreal & Kingston, Ithaca.

Wittgenstein, L. 1976. Lectures on the Foundations of Mathematics. Cambridge [1939], Cora Diamond (ed.). Hassocks: Harvester Press.

Zach, R. 2003b. ‘The practice of finitism. Epsilon calculus and consistency proofs in Hilbert’s Program’. Synthese, 137:211–259, 2003.

Zach, R. 2004. ‘Hilbert’s “Verungluckter Beweis,” the first epsilon theorem and consistency proofs’. History and Philosophy of Logic, 25:79–94.

Zach, R. 2006. ‘Hilbert’s Program Then and Now’. Handbook of the Philosophy of Science, Vol. 5: Philosophy of Logic, Jacquette, D (ed.). Elsevier.


Refbacks

  • There are currently no refbacks.