CONSTRUCTIVE DISCURSIVE LOGIC WITH STRONG NEGATION

SEIKI AKAMA, JAIR MINORO ABE AND KAZUMI NAKAMATSU

Abstract

Jaskowski’s discursive logic (or discussive logic) is the first formal paraconsistent logic which is classified as a non-adjunctive system. It is now recognized that discursive logic is not generally appropriate for paraconsistent reasoning. To improve it in a constructive setting, we propose a constructive discursive logic with strong negation $CDLSN$ based on Nelson’s constructive logic N^-. In $CDLSN$, discursive negation is defined similar to intuitionistic negation and discursive implication is defined as material implication using discursive negation. We give an axiomatic system and Kripke semantics with a completeness proof. We also discuss some advantages of the proposed system over other paraconsistent systems.

1. Introduction

Jaskowski’s discursive logic (or discussive logic) is the first formal paraconsistent logic which is classified as a non-adjunctive system; see Jaskowski [3]. Discursive logic can be motivated by the nature of our ordinary discourse. That is, in a discourse, several participants exist and have some information, beliefs, and others.

In this regard, truth is formalized by means of the sum of opinions supplied by participants. Even if each participant has consistent information, some participant could be inconsistent with other participants.

This amounts to supposing that $A \land \sim A$ does not hold while both A and $\sim A$ do. This means that the so-called adjunction, i.e. from $\vdash A, \vdash B$ to $\vdash A \land B$ is invalid. Jaskowski modeled the idea founded on modal logic S5 and reached the discursive logic in which adjunction and modus ponens cannot hold. In addition, Jaskowski introduced discursive implication $A \rightarrow_d B$ as $\Diamond A \rightarrow B$ satisfying modus ponens.

The rest of this paper is as follows. Section 2 is devoted to an exposition Jaskowski’s discursive logic. In section 3, we introduce constructive discursive logic with strong negation $CDLSN$ with an axiomatic system. Section
4 outlines a Kripke semantics. We establish the completeness theorem. The final section gives some conclusions.

2. Jaskowski’s Discursive Logic

Discursive Logic was proposed by a Polish logician S. Jaskowski [3] in 1948. It was a formal system \(J \) satisfying the conditions: (a) from two contradictory propositions, it should not be possible to deduce any proposition; (b) most of the classical theses compatible with (a) should be valid; (c) \(J \) should have an intuitive interpretation.

Such a calculus has, among others, the following intuitive properties remarked by Jaskowski himself: suppose that one desires to systematize in only one deductive system all theses defended in a discussion. In general, the participants do not confer the same meaning to some of the symbols. One would have then as theses of a deductive system that formalize such a discussion, an assertion and its negation, so both are “true” since it has a variation in the sense given to the symbols. It is thus possible to regard discursive logic as one of the so-called paraconsistent logics.

Jaskowski’s \(D_2 \) contains propositional formulas built from logical symbols of classical logic. In addition, possibility operator \(\Diamond \) in \(S5 \) is added. Based on the possibility operator, three discursive logical symbols can be defined as follows:

- discursive implication: \(A \rightarrow_d B \overset{\text{def}}{=} \Diamond A \rightarrow B \)
- discursive conjunction: \(A \wedge_d B \overset{\text{def}}{=} \Diamond (A \wedge B) \)
- discursive equivalence: \(A \leftrightarrow_d B \overset{\text{def}}{=} (A \rightarrow_d B) \wedge_d (B \rightarrow_d A) \)

Additionally, we can define discursive negation \(\neg_d A \) as \(A \rightarrow_d \text{false} \). Jaskowski’s original formulation of \(D_2 \) in [3] used the logical symbols: \(\neg_d, \rightarrow_d, \lor, \wedge, \neg, \) and he later defined \(\wedge_d \) in [4].

The following axiomatization due to Kotas [5] has the following axioms and the rules of inference.

Axioms

(A1) \(\square (A \rightarrow (\neg A \rightarrow B)) \)
(A2) \(\square ((A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))) \)
(A3) \(\square ((\neg A \rightarrow A) \rightarrow A) \)
(A4) \(\square (\square A \rightarrow A) \)
(A5) \(\square (\square (A \rightarrow B) \rightarrow (\square A \rightarrow \square B)) \)
(A6) \(\square (\neg \square A \rightarrow \square \neg \square A) \)

Rules of Inference

(R1) substitution rule
CONSTRUCTIVE DISCURSIVE LOGIC WITH STRONG NEGATION

(R2) \(\Box A, \Box (A \rightarrow B)/\Box B \)
(R3) \(\Box A/\Box A \)
(R4) \(\Box A/A \)
(R5) \(\neg \neg A/A \)

There are other axiomatizations of \(D_2 \), but we omit the details here.

3. Constructive Discursive Logic with Strong Negation

The gist of discursive logic is to use the modal logic S5 to define discursive logical connectives which can formalize a non-adjunctive system. It follows that discursive logic can be seen as a paraconsistent logic, which does not satisfy explosion of the form: \(\{ A, \neg A \} \models B \) for any \(A \) and \(B \), where \(\models \) is a consequence relation. We say that a system is trivial iff all the formulas are provable. Therefore, paraconsistent logic is useful to formalize inconsistent but non-trivial systems.

A question arises. Most works on discursive logic utilize classical logic and S5 as a basis. However, we do not think that these are essential. For instance, an intuitionist hopes to have a discursive system in a constructive setting. This is a topic explored in this paper.

To make the idea formal, it is worth considering Nelson’s constructive logic with strong negation \(N^- \) of Almukdad and Nelson [1]. In \(N^- \), \(\sim \) denotes strong negation satisfying the following axioms:

(N1) \(\sim \sim A \rightarrow A \)
(N2) \(\sim (A \land B) \leftrightarrow (A \lor B) \)
(N3) \(\sim (A \lor B) \leftrightarrow (A \land B) \)
(N4) \(\sim (A \rightarrow B) \leftrightarrow (A \land B) \)

and the axiomatization of the intuitionistic positive logic \(\text{Int}^+ \) with modus ponens (MP), i.e. \(A, A \rightarrow B \) as the rule of inference.

Note here that \(N^- \) is paraconsistent in the sense that \(\sim (A \land \sim A) \) and \((A \land \sim A) \rightarrow B \) do not hold.

If we add (N0) to \(N^- \), we have \(N \) of Nelson [6].

(N0) \((A \land \sim A) \rightarrow B \)

In \(N \), intuitionistic negation \(\neg \) can be defined as follows:

\(\neg A =_{def} A \rightarrow \sim A \)

If we add the law of excluded middle: \(A \lor \sim A \) to \(N \), the resulting system is classical logic.
Indeed, N^- is itself a paraconsistent logic, but can also be accommodated as a version of discursive logic.

Now, we introduce the constructive discursive logic with strong negation $CDLSN$. It diverges in two ways from D_2: (1) it does not take classical logic as its starting point; and (2) it does not use the possibility operator \Diamond as a modality, but a negation with modal operators.

$CDLSN$ can be defined in two ways. One is to extend N^- with discursive negation \neg_d. The other is to weaken intuitionistic negation in N^-. We adopt the first approach.

Here, we fix the language of the logics which we use in this paper. The language of Int^+ is defined as the set of propositional variables and logical symbols: \land (conjunction), \lor (disjunction) and \rightarrow (implication). The language of Int is the extension of that of Int^+ with \neg (intuitionistic negation). The language of N^- is the extension of that of Int^+ with \sim (strong negation). The language of $CDLSN$ is the extension of N^- with \neg_d (discursive negation). Additionally, we use the logical constant false as the abbreviation of $\neg (A \rightarrow A)$.

We believe that $CDLSN$ is (constructive) improvement of D_2. First, $CDLSN$ uses Int^+ rather than classical logic as the base. Second, $CDLSN$ simulates modality in D_2 by negations, although D_2 needs the possibility operator.

\neg_d is similar to \neg, but these are not equivalent. The motivation of introducing \neg_d is to interpret discursive negation as the negation used by an intuitionist in the discursive context. Unfortunately, intuitionistic negation is not a discursive negation. And we need to re-interpret it as \neg_d. Based on \neg_d, we can define \neg_d and \land_d.

Discursive implication \neg_d and discursive conjunction \land_d can be respectively introduced by definition as follows.

$$A \rightarrow_d B =_{df} \neg_d A \lor B$$
$$A \land_d B =_{df} \sim \neg_d A \land B$$

Observe that $A \rightarrow (\sim A \rightarrow B)$ is not a theorem in $CDLSN$ while $A \rightarrow (\neg_d A \rightarrow B)$ is a theorem in $CDLSN$. The axiomatization of $CDLSN$ is that of N^- with the following three axioms.

(CDLSN1) $\neg_d A \rightarrow (A \rightarrow B)$
(CDLSN2) $(A \rightarrow B) \rightarrow ((A \rightarrow \neg_d B) \rightarrow \neg_d A)$
(CDLSN3) $A \rightarrow \sim \neg_d A$

Here, an explanation of these axioms may be in order. (CDLSN1) and (CDLSN2) describe basic properties of intuitionistic negation. By (CDLSN3), we show the connection of \sim and \neg_d. The intuitive interpretation of $\sim \neg_d$ is like possibility under our semantics developed below.
CONSTRUCTIVE DISCURSIVE LOGIC WITH STRONG NEGATION 399

$\lnot d$ is weaker than \lnot. Vorob’ev [8] proposed a constructive logic having both strong and intuitionistic negation. It extends N with the following two axioms:

$\sim \sim A \iff A$

$\sim A \to \sim dA$, where A is atomic

If we replace (CDLSN3) by the axiom of the form $\sim \sim dA \iff A$ and add the axiom $\sim A \to \sim dA$, then $\sim d$ agrees with \sim. Thus, it is not possible to identify $\sim d$ and \sim in our axiomatization.

We use $\vdash A$ to mean that A is a theorem in $CDLSN$. Here, the notion of a proof is defined as usual. Let $\Gamma = \{B_1, ..., B_n\}$ be a set of formulas and A be a formula. Then, $\Gamma \vdash A$ if $\vdash \Gamma \to A$.

Notice that $\sim d$ has some similarities with \sim, as the following lemma indicates.

Lemma 1: The following formulas are provable in $CDLSN$.

1. $\vdash A \to \sim d\sim dA$
2. $\vdash (A \to B) \to (\sim dB \to \sim dA)$
3. $\vdash (A \land \sim dA) \to B$
4. $\vdash \sim d(A \land \sim dA)$
5. $\vdash (A \to \sim dA) \to \sim dA$

Proof. Ad(1): From (CDSLN1) and Int^+ (i.e. $\vdash (A \to (B \to C)) \to (B \to (A \to C))$), we have (i).

(i) $\vdash A \to (\sim dA \to A)$

(ii) is an instance of (CDLSN2).

(ii) $\vdash (\sim dA \to A) \to ((\sim dA \to \sim dA) \to \sim d\sim dA)$

(iii) is a theorem of Int^+ (i.e. $\vdash (A \to B) \to ((B \to C) \to (A \to C))$)

(iii) $\vdash (A \to (\sim dA \to A)) \to (((\sim dA \to A) \to ((\sim dA \to \sim dA)

$\to \sim d\sim dA)) \to (A \to ((\sim dA \to \sim dA) \to \sim d\sim dA)))$

From (i) and (iii) by (MP), we have (iv).

(iv) $\vdash (((\sim dA \to A) \to ((\sim dA \to \sim dA) \to \sim d\sim dA))

\to (A \to ((\sim dA \to \sim dA) \to \sim d\sim dA)))$

From (ii) and (iv) by (MP), we have (v).

(v) $\vdash A \to ((\sim dA \to \sim dA) \to \sim d\sim dA))$
By $\vdash (A \to (B \to C)) \to (B \to (A \to C))$, we can derive (vi).

(vi) $\vdash (\neg_d A \to \neg_d A) \to (A \to \neg_d \neg_d A)$

Since $\vdash A \to A$, we have (vii).

(vii) $\vdash \neg_d A \to \neg_d A$

From (vi) and (vii) by (MP), we can finally obtain (viii).

(viii) $\vdash A \to \neg_d \neg_d A$

Ad(2): By (CDLSN2), we have (i).

(i) $\vdash (A \to B) \to ((A \to \neg_d B) \to \neg_d A)$

(ii) is a theorem of Int^+.

(ii) $\vdash (\neg_d B \to (A \to \neg_d B)) \to (((A \to \neg_d B) \to \neg_d A) \\
\to (\neg_d B \to \neg_d A))$

(iii) is an instance of $A \to (B \to A)$, which is the axiom of Int^+.

(iii) $\vdash \neg_d B \to (A \to \neg_d B)$

From (ii) and (iii) by (MP), (iv) is obtained.

(iv) $\vdash ((A \to \neg_d B) \to \neg_d A) \to (\neg_d B \to \neg_d A)$

(v) is a theorem of Int^+.

(v) $\vdash ((A \to B) \to ((A \to \neg_d B) \to \neg_d A) \\
\to (((A \to \neg_d B) \to \neg_d A) \to (\neg_d B \to \neg_d A)) \\
\to (A \to B) \to (\neg_d B \to \neg_d A))$

From (i) and (v) by (MP), (vi) can be proved.

(vi) $\vdash ((A \to \neg_d B) \to \neg_d A) \to (\neg_d B \to \neg_d A) \\
\to ((A \to B) \to (\neg_d B \to \neg_d A))$

From (iv) and (vi) by (MP), we can reach (vii).

(vii) $\vdash (A \to B) \to (\neg_d B \to \neg_d A)$

Ad(3): By (CDLSN1), we have (i).

(i) $\vdash \neg_d A \to (A \to B)$

From $\vdash (A \to (B \to C)) \to (B \to (A \to C))$, we can derive (ii).
(ii) ⊢ A → (¬dA → B)

Since ⊢ (A → (B → C)) → ((A ∧ B) → C), we have (iii).

(iii) ⊢ (A → (¬dA → B)) → ((A ∧ ¬dA) → B)

From (ii) and (iii) by (MP), we can obtain (iv).

(iv) ⊢ (A ∧ ¬dA) → B

Ad(4): By (3), we have (i) and (ii).

(i) ⊢ (A ∧ ¬dA) → B
(ii) ⊢ (A ∧ ¬dA) → ¬dB

From (CDLSN2), (iii) holds.

(iii) ((A ∧ ¬dA) → B) → (((A ∧ ¬dA) → ¬dB) → ¬d(A ∧ ¬dA))

From (i) and (iii) by (MP), we have (iv).

(iv) ((A ∧ ¬dA) → ¬dB) → ¬d(A ∧ ¬dA)

From (ii) and (iv) by (MP), we can derive (v).

(v) ⊢ ¬d(A ∧ ¬dA)

Ad(5): By (CDLSN2), we have (i).

(i) ⊢ (A → A) → ((A → ¬dA) → ¬dA)

(ii) is a theorem of Int⁺.

(ii) ⊢ A → A

From (i) and (ii) by (MP), we can obtain (iii).

(iii) (A → ¬dA) → ¬dA

It should be, however, pointed out that the following formulas are not provable in CDLSN.

\[\vdash \neg (A \land \neg A) \]
\[\vdash A \lor \neg A \]
\[\vdash (A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A) \]
\[\vdash \neg d \neg dA \rightarrow A \]
\[\vdash A \lor \neg dA \]
\[\vdash (\neg dA \rightarrow A) \rightarrow A \]
4. Kripke Semantics

It is possible to give a Kripke semantics for CDLSN which is a discursive modification of that for N provided by Thomason [7]. Let PV be a set of propositional variables and p be a propositional variable, and For be a set of formulas. A CDLSN-model is a tuple $\langle W, w_0, R, V \rangle$, where $W \neq \emptyset$ is a set of worlds, $w_0 \in W$ satisfying $\forall w(w_0 Rw)$, $R \subseteq W \times W$ is a reflexive and transitive relation, and $V : PV \times W \rightarrow \{0, 1\}$ is a partial valuation satisfying:

\[
V(p, w) = 1 \text{ and } wRv \Rightarrow V(p, v) = 1 \\
V(p, w) = 0 \text{ and } wRv \Rightarrow V(p, v) = 0
\]

for any formula $p \in PV$ and $w, v \in W$. Here, $V(p, w) = 1$ is read “p is true at w” and $V(p, w) = 0$ is read “p is false at w”, respectively. Both truth and falsity are independent statuses given by a constructive setting.

We can now extend V for any formula A, B in a tandem way as follows.

\[
V(A \land A, w) = 1 \text{ iff } V(A, w) = 0.
\]

\[
V(A \lor B, w) = 1 \text{ iff } V(A, w) = 1 \text{ and } V(B, w) = 1.
\]

\[
V(A \rightarrow B, w) = 1 \text{ iff } \forall v(wRv \text{ and } V(A, v) = 1 \Rightarrow V(B, v) = 1).
\]

\[
V(\neg_d A, w) = 1 \text{ iff } \forall v(wRv \Rightarrow V(A, v) = 0).
\]

\[
V(\sim A, w) = 0 \text{ iff } V(A, w) = 1.
\]

\[
V(A \land B, w) = 0 \text{ iff } V(A, w) = 0 \text{ or } V(B, w) = 0.
\]

\[
V(A \lor B, w) = 0 \text{ iff } V(A, w) = 0 \text{ and } V(B, w) = 0.
\]

\[
V(A \rightarrow B, w) = 0 \text{ iff } V(A, w) = 1 \text{ and } V(B, w) = 0.
\]

\[
V(\neg_d A, w) = 0 \text{ iff } \exists v(wRv \text{ and } V(A, v) = 1).
\]

Additionally, we need the following condition:

\[
V(A \land \sim A, w) = 1 \text{ for some } A \text{ and some } w.
\]

This condition is used to invalidate $(A \land \sim A) \rightarrow B$, and guarantees the paraconsistency of \sim in CDLSN.

Here, observe that truth and falsity conditions for $\sim \neg_d A$ are implicit in the above clauses from the equivalences such that $V(\sim \neg_d A, w) = 1$ iff $V(\neg_d A, w) = 0$, and $V(\sim \neg_d A, w) = 0$ iff $V(\neg_d A, w) = 1$. One can claim that $\sim \neg_d$ behaves as a modality. In this regard, we do not need to introduce a possibility operator into CDLSN as a primitive.
We say that A is valid, written $\models A$, iff $V(A, w_0) = 1$ in all CDLSN models. Let $\Gamma = \{B_1, ..., B_n\}$ be a set of formulas. Then, we say that Γ entails A, written $\Gamma \models A$, iff $\Gamma \rightarrow A$ is valid.

Lemma 2 states the monotonicity of valuation in a Kripke model.

Lemma 2: The following hold for any formula A which is not of the form $\sim \neg_d B$, and any worlds $w, v \in W$.

- $V(A, w) = 1$ and $wRv \Rightarrow V(A, v) = 1$,
- $V(A, w) = 0$ and $wRv \Rightarrow V(A, v) = 0$.

Proof. By induction on A.

- $ad(\neg)$: Suppose $V(\neg A, w) = 1$ and wRv. Then, we have that $V(A, w) = 0$ and wRv. By induction hypothesis (IH), we have that $V(A, v) = 0$, i.e. $V(\neg A, v) = 1$.

- $Ad(\land)$: Suppose $V(A \land B, w) = 1$ and wRv. Then, we have $V(A, w) = 1$ and $V(B, w) = 1$. By (IH), $V(A, v) = 1$ and $V(B, v) = 1$, i.e. $V(A \land B, v) = 1$.

- $Ad(\lor)$: Suppose $V(A \lor B, w) = 0$ and wRv. Then, we have $V(A, w) = 1$ or $V(B, w) = 1$. By (IH), $V(A, v) = 1$ or $V(B, v) = 1$, i.e. $V(A \lor B, v) = 1$.

- $Ad(\rightarrow)$: Suppose $V(A \rightarrow B, w) = 1$ and wRv. Then, we have $\forall v(wRv$ and $V(A, v) = 1 \Rightarrow V(B, v) = 1)$. By (IH) and the transitivity of R, $\forall z(vRz$ and $V(A, z) = 1 \Rightarrow V(B, z) = 1)$, i.e. $V(A \rightarrow B, v) = 1$.

Lemma 2 does not hold for the formula of the form $\sim \neg_d A$. We can easily construct a counter model. We only treat the case of $V(\sim \neg_d A, w) = 1$. The case of $V(\sim \neg_d A, w) = 0$ is similar. Assume that $V(\sim \neg_d A, w) = 1$ and wRv. Then, $V(\neg_d A, w) = 0$ iff $\exists u(wRu$ and $V(A, u) = 1)$. Now, suppose that there exists a world t distinct from u such that vRt and a valuation
such that $V(A,t) = 0$. This means that $V(\sim \neg_d A, v) = 0$. Thus, $V(\sim \neg_d A, w) = 1$ and wRv, but $V(\sim \neg_d A, v) = 0$.

We think that the fact is intuitive because $\sim \neg_d A$ behaves as possibility. There are no reasons for possibility in discourse to satisfy the monotonicity.

Next, we present a soundness theorem.

Theorem 3: (soundness) $\vdash A \Rightarrow \models A$.

Proof. It suffices to check that (CDLSN1), (CDLSN2) and (CDLSN3) are valid and (MP) preserves validity. The proof of preservation of validity under (MP) is well-known in constructive and intuitionistic logic. Thus, we here prove the validity of three axioms.

Ad(CDLSN1): Suppose it is not valid. Then, $V(\neg_d A, w_0) = 1$ and $V(A \rightarrow B, w_0) \neq 1$. From the first conjunct, $\forall v(w_0Rv \Rightarrow V(A, v) \neq 1)$ holds. From the second conjunct, $\exists v(w_0Rv$ and $V(A, v) = 1$ and $V(B, v) \neq 1$). However, $V(A, v) = 1$ and $V(A, v) \neq 1$ are contradictory.

Ad(CDLSN2): Suppose it is not valid. Then, $V(A \rightarrow B, w_0) = 1$ and $V(A \rightarrow \neg_d B, w_0) = 1$ and $V(\neg_d A, w_0) \neq 1$. From the first conjunct, $\forall v(w_0Rv$ and $V(A, v) = 1 \Rightarrow V(B, v) = 1$) holds. From the second conjunct, $\forall v(w_0Rv$ and $V(A, v) = 1 \Rightarrow V(\neg_d B, v) = 1$) iff $\forall v(wRv$ and $V(A, v) = 1$) iff $\forall z(vRz \Rightarrow V(A, z) \neq 1)$. From the third conjunct, $\exists v(w_0Rv$ and $V(A, v) = 1$) holds. However, $V(A, v) = 1$ and $V(A, z) \neq 1$ for any z such that vRz are contradictory.

Ad(CDLSN3): Suppose it is not valid. Then, $V(A, w_0) = 1$ and $V(\sim \neg_d A, w_0) \neq 1$. From the second conjunct, we have $V(\neg_d A, w_0) \neq 0$ iff $\forall v(w_0Rv \Rightarrow V(A, v) \neq 1)$. However, $V(A, w_0) = 1$ and $V(A, v) \neq 1$ for any v such that w_0Rv are contradictory.

Theorem 3 can be generalized as a strong form, i.e. $\Gamma \vdash A \Rightarrow \Gamma \models A$.

Now, we give a completeness proof. We say that a set of formulas Γ^* is a maximal non-trivial discursive theory (mntdt) iff (1) Γ^* is a theory, (2) Γ^* is non-trivial, i.e. $\Gamma^* \not\vdash B$ for some B, (3) Γ^* is maximal, i.e. $A \in \Gamma^*$ or $A \not\in \Gamma^*$, (4) Γ^* is discursive, i.e. $\sim \neg_d A \not\in \Gamma^*$ iff $\sim \neg_d A \in \Gamma^*$. Here, discursiveness is needed to capture the property of discursive negation.

Lemma 4: For any mntdt Γ and any formula A, B, the following hold:

1. $A \land B \in \Gamma$ iff $A \in \Gamma$ and $B \in \Gamma$
2. $A \lor B \in \Gamma$ iff $A \in \Gamma$ or $B \in \Gamma$
3. $A \rightarrow B \in \Gamma$ iff $\forall \Delta(\Gamma \subseteq \Delta$ and $A \in \Delta \Rightarrow B \in \Delta)$
(4) $\neg A \in \Gamma$ iff $\forall \Delta (\Gamma \subseteq \Delta \Rightarrow A \notin \Delta)$

(5) $\sim (A \land B) \in \Gamma$ iff $\sim A \in \Gamma$ or $\sim B \in \Gamma$

(6) $\sim (A \lor B) \in \Gamma$ iff $\sim A \in \Gamma$ and $\sim B \in \Gamma$

(7) $\sim (A \rightarrow B) \in \Gamma$ iff $A \in \Gamma$ and $B \in \Gamma$

(8) $\sim\sim A \in \Gamma$ iff $A \in \Gamma$

(9) $\sim \neg A \in \Gamma$ iff $\exists \Delta (\Gamma \subseteq \Delta \text{ and } A \in \Delta)$.

Proof. We only prove (4) and (9). Other cases are similarly justified from the literature on constructive logic (cf. Thomason [7]).

Ad (4): $\neg A \in \Gamma$ iff (by axiom (CDLSN1)) $A \rightarrow B \in \Gamma$ iff (by Lemma 4 (3)) $\forall \Delta (\Gamma \subseteq \Delta \text{ and } A \in \Delta \Rightarrow B \in \Delta)$. Since Γ is non-trivial, $B \notin \Gamma$ for some B. Thus, $B \in \Delta$ does not always hold, i.e. $\forall \Delta (\Gamma \subseteq \Delta \text{ and } A \in \Delta \Rightarrow false)$ iff $\forall \Delta (\Gamma \subseteq \Delta \Rightarrow A \notin \Delta)$.

Ad (9): We prove it by contraposition from (4). Contraposition can derive $\exists \Delta (\Gamma \subseteq \Delta \text{ and } A \in \Delta)$ by negating the left and right sides of (4). Then, it is shown to be equivalent to $\neg A \notin \Gamma$. By (discursiveness), $\neg A \notin \Gamma$ iff $\sim \neg A \in \Gamma$.

Based on the maximal non-trivial discursive theory, we can define a canonical model (Γ, \subseteq, V) such that Γ is a mntdt, \subseteq is the subset relation, and V is a valuation satisfying the conditions that $V(p, \Gamma) = 1$ iff $p \in \Gamma$ and that $V(p, \Gamma) = 0$ iff $p \notin \Gamma$.

Next lemma is a truth lemma.

Lemma 5: (truth lemma) For any mntdt Γ and any A, we have the following:

$V(A, \Gamma) = 1$ iff $A \in \Gamma$

$V(A, \Gamma) = 0$ iff $A \notin \Gamma$

Proof. It suffices to check the case $A = \neg B$.

$V(\neg B, \Gamma) = 1$ iff $\forall \Delta \in \Gamma^* (\Gamma \subseteq \Delta \Rightarrow V(B, \Delta) \neq 1)$

(IH) iff $\forall \Delta \in \Gamma^* (\Gamma \subseteq \Delta \Rightarrow B \notin \Delta)$

(Lemma 4 (4)) iff $\neg B \in \Gamma$

$V(\neg B, \Gamma) = 0$ iff $\exists \Delta \in \Gamma^* (\Gamma \subseteq \Delta \text{ and } V(B, \Delta) = 1)$

(IH) iff $\exists \Delta \in \Gamma^* (\Gamma \subseteq \Delta \text{ and } B \in \Delta)$

(Lemma 4 (9)) iff $\sim \neg B \in \Gamma$

Then, we can state the (strong) completeness of $CDLSN$ as follows:
Theorem 6: (completeness) \(\Gamma \models A \Rightarrow \Gamma \vdash A \).

Proof. Assume \(\Gamma \not\vdash A \). Then, by Lindenbaum lemma, there is a mntdt \(\Gamma' \) such that \(A \not\in \Gamma' \). By using a canonical model defined above, we have \(V(A, \Gamma') \neq 1 \) by Lemma 5. Consequently, completeness follows.

Finally, we justify the formal properties of CDLSN as a discursive logic. It is extremely important because we can understand the differences of CDLSN and standard discursive logics like \(D_2 \). As mentioned in section 1, Jaskowski suggested three conditions of discursive logics. We check them here.

CDLSN is discursive. First, \(\neg (A \land \neg A) \) does not hold. The explosion also fails, i.e. \(A, \neg A \vdash B \). But, these hold for \(\neg d \) (cf. Lemma 1), and it is not a problem because explosion should be valid for plausible discourses.

Note that the adjunction of the form \(\neg d A; \neg d B \vdash \neg d A \land d B \) does not hold in CDLSN. But, it holds for \(\land \).

Second, in CDLSN, most of the theses of constructive logic are valid. Since CDLSN has a constructive base, it is different from \(D_2 \) whose base is classical logic.

Third, we can give an intuitive interpretation for CDLSN by means of Kripke models as discussed below.

CDLSN is constructive because the law of excluded middle, which is a non-constructive principle, does not hold. As discussed above, \(N^- \) is a constructive logic, and the fact is not surprising.

From our Kripke semantics given above, we can give an intuitive interpretation of CDLSN. The interpretations of the logical symbols of \(N^- \) are obvious, and we concentrate on discursive logical symbols.

Here, it may be helpful to explain the interpretation by a brief example. Consider a discourse which consists of several persons who are interested in some subjects. Each person has knowledge about subjects, and a discourse is plausibly expanded by adding other persons.

In this setting, a world in our semantics could be identified with a discourse just given. So, the logical symbols can be interpreted with reference to a discourse.

Since the interpretations of \(\neg d \) are crucial, we begin with it, namely

\(\neg d A \) is true iff \(A \) is false in all plausible growing discourses,
\(\neg d A \) is false iff \(A \) is true in some plausible growing discourse.

Here, the second clause corresponds to the possibility used in discursive logic. Note here that the plausible growth of discourse implies the increase of information (or knowledge) in view of constructive setting.

Other discursive logical symbols can be read as follows:
CONSTRUCTIVE DISCURSIVE LOGIC WITH STRONG NEGATION

$A \land_d B$ is true iff A is true in one discourse and B is true in another plausible discourse.

$A \rightarrow_d B$ is true iff if A is true in certain plausible discourse then B is true in a discourse.

The interpretations of \lor_d and \neg_d can be obtained by definition. The important point here is that the primitive discursive connective is \neg_d.

In our approach, two kinds of negations are used and it is necessary to compare them. \sim is a constructive negation which can express constructive falsity of the proposition, whereas \neg_d is a discursive negation of the proposition with modal flavor.

They can express the possibility operator needed in discursive logic as $\sim \neg_d$. Here, \sim behaves classical-like negation and \neg_d modal-like negation. We know in classical modal logic that $\box A \equiv \neg \square \neg A$ holds. Here, \neg is classical negation and \equiv is classical equivalence. It is therefore natural to consider two negations in classical-like and modal-like way.

From the above discussion, $CDLSN$ is shown to be a constructive discursive logic which is compatible with Jaskowski’s original ideas. It means that a constructivist can formally perform discursive reasoning.

5. Concluding Remarks

We proposed a constructive version of discursive logic $CDLSN$ with an axiomatization and semantics. We set it up as a natural modification of Almukdad and Nelson’s N^{-} [1] with \neg_d. We gave some formal properties of $CDLSN$ including completeness.

Alternatively, $CDLSN$ can be interpreted as the system which weakens intuitionistic negation \neg in N^{-}. However, the alternative formulation does not affect the results in this paper. We believe that this system seems to be new in the literature.

There are two advantages of the proposed system. First, it is constructively intuitive because we have a Kripke semantics. In view of the incompleteness of discourse, constructive approach seems attractive for discursive logic.

Second, it dispenses with modal operators to define discursive connectives. In other words, the possibility operator used in standard discursive logic can be replaced by the combination of two negations. However, it may be possible to introduce other types of discursive connectives as primitives.

Although this paper focuses on theoretical aspects of constructive discursive logic, the logic has many possible applications. For example, it may be worth studying non-monotonic reasoning and multi-agent in constructive discursive logic. We hope to report interesting applications of the proposed logic in future papers.
ACKNOWLEDGEMENTS

We thank the referee for his/her detailed comments.

Seiki Akama:
1-20-1, Higashi-Yurigaoka, Asao-ku, Kawasaki-shi, 215-0012, Japan
E-mail: akama@jcom.home.ne.jp

Jair Minoro Abe:
Paulista University, Sao Paulo, Brazil
E-mail: jairabe@uol.com.br

Kazumi Nakamatsu:
University of Hyogo, Himeji, Japan
E-mail: nakamatsu@shse.u-hyogo.ac.jp

REFERENCES